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Scattering theory in a time-dependent external field 
I. General theory 
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Abstract. A general framework is set up for the description of quantum-mechanical scattering 
processes for the case that both the free hamiltonian H,(t) = H , + H , ( t )  and the full hamil- 
tonian H(t)  = H,(t)+ V are time-dependent. In particular the existence of the various 
evolution operators is considered and the wave operators Q,(s), which now depend on the 
initial time s, are defined. The consequences of a periodic time dependence are studied and 
for H,( t )  of the type HI@) = H I  cos(ot+6) it is shown that for I W / + C D  the frequency- 
dependent wave operators converge to the wave operators which pertain to the case that 
H , ( t )  is absent. 

1. Introduction 

Since the advent of masers and lasers intense electric fields have become available as 
a tool for investigations in atomic and molecular physics. A topic that has attracted 
much attention during the past few years is, for instance, the system consisting of an 
atom or molecule placed in an intense field, which is probed by a second, weak, radiation 
field. In this way information is gained about the changes that are induced by the 
strong field in the atom, the so called dressing of the atom by the field (Cohen-Tannoudji 
and Haroche 1969). It is therefore somewhat remarkable that hardly any attention 
has been paid to  the analogous case, where the weak field as a probe is replaced by a 
second particle (or a particle beam) which is brought into collision with the original 
atom or molecule and where the details of the ensuing scattering process are studied 
(see, however, the theoretical investigations of Hahn and Hertel 1972). 

Apart from the interest in such processes from the point of view of scattering theory 
itself, two further reasons can be put forward for investigating atomic scattering in a 
radiation field. 

(i) In a gas laser two-particle collisions are paramount for the actual performance 
of this device. It is therefore important to  have some insight into the possible modifi- 
cations of these processes, brought about by the radiation field. 

(ii) In order to construct a kinetic theory for neutral gases subject to a strong 
radiation field, some knowledge is needed about the scattering of two (or more) particles 
in the presence of the field. For instance, within the formalism of the so called cluster 
expansion method (Dorfman and Cohen 1967), it is important to know that the various 
streaming operators possess a long time limit. This is directly related to the existence 
problem of the Merller wave operators in the presence of the external field. 
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In the present work we will investigate for suitable models some basic features of 
scattering theory, such as the existence of M d e r  wave operators and properties of 
the S operator in the presence of an external field. In fact our approach is semi-classical 
in that we consider a quantum system in the presence of an external classical field. 
The latter enters the formalism through a time-dependent contribution to  the hamiltonian 
of the system. 

As is customary in this area we will use a model for an atom or molecule, which 
consists of a point particle with internal structure (such as the rigid rotator model of a 
diatomic molecule). Thus our particles may possess a finite or countably infinite 
number of internal energy levels, so that for a particle j the one-particle hamiltonian 
has the form 

( 1 . 1 )  

where KS' = hkf/(2mj) is the translational part of the hamiltonian, whereas KY' is its 
internal part, which can be represented by the matrix 

H .  = K'.'+ 1 1  Kin*, 

(we use reduced units with respect to  h). 

being strongly 'off-resonant'. 

'matrix' 

In actual cases only a few levels wk play a role during radiative processes, the others 

The interaction between atoms i and j is assumed to be given by the potential 

(1.3) 

where xi and x j  are the position vectors of particles i a n d j ,  respectively. Since we 
consider neutral particles an external field acts directly on the internal degrees of freedom 
only. 

However, in case the field is spatially inhomogeneous there will be an influence on 
the translational motion as well. As an example we can consider the case of an external 
electric field E(x, t) .  Then, in the dipole approximation, the one-particle hamiltonian 
for particle j is 

y(iJ, = [ I/pyxi - X j ) ]  

Hj( t )  = Hj + H,'"'(t), 
with 

H?"'(t) = - pj  . E(Xj, t ) ,  

where p j ,  the dipole-moment operator, can be represented as the matrix 

pj = { p j , k l } .  (1.6) 
Although p j  does not contain variables pertaining to  the translational motion, this 
may be different for (1.5) as a whole, due to  the x j  dependence of E(x j ,  t ) .  

It should be clear from the model sketched above that ionization or dissociation 
of the constituent particles of the system is outside the scope of the present investigation. 
In fact, by excluding this possibility, we are able to  treat a collision between particles 
1 and 2 as a potential scattering problem, the 'free' hamiltonian being 

(1.7) H , ( t )  = Hdt) + H2( t ) ,  
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whereas the full hamiltonian is given by 

H ( t )  = H,(t)+ ~ ( ' 3 ~ )  

Note that. although break-up processes of particles 1 and 2 are not considered, these 
two particles may form bound states in the potential t"'*2', just as in ordinary potential 
scattering. 

In order to get some feeling as to how the time dependence and spatial inhomogeneity 
of the external field manifest themselves during a collision process, consider the case 
of two particles colliding with each other at  thermal velocities (say 300 m s - ' )  in an 
external field in the optical region (say 1 = 6000 A wavelength). In this case the field 
frequency is v = 0.5 x l O I 5  s - l ,  whereas for a potential with a range of a few Angstroms 
the average duration of a collision is in the order of s so that during a collision 
the field oscillates rapidly. On the other hand, since the collision process effectively 
takes place in a spatial region of say 10 A radius, we see that usually no large error is 
introduced by evaluating the external field at the centre-of-mass coordinate X rather 
than the coordinates x1  and x2 (long wavelength approximation). 

Furthermore we can distinguish two different physical situations. The first is that 
ofthe scattering oftwo particles in a spatially homogeneous field, so that in the asymptotic 
regions the particles are still influenced by the field. This is what happens in a gas laser 
(although the field is not homogeneous in that case). On the other hand, one can perform 
scattering experiments where a beam of particles is directed into a collision chamber 
containing a gas of target particles as well as a radiation field, the latter being strictly 
confined to the chamber. Then the field is spatially localized and asymptotically the 
particles become free, ie they leave the field region. 

The organization of the present work is as follows. In Q 2 we consider the existence 
problem of the time-evolution operators for the case of a time-dependent hamiltonian. 
Here we make use of a number of results obtained previously by Kat0 (1953). In Q 3 
we define the wave operators for the case at hand and derive some general properties 
such as intertwining relations. 

Since the system is not homogeneous in time it is not surprising that the wave 
operators are found to  depend on the zero of the time axis (ie on the phase of the external 
field at t = 0 for sinusoidal fields). We close Q 3 with a simple example for which the 
existence of the wave operators can be proven explicitly. Section 4 deals with the case 
of external fields with periodic time dependence. Under these circumstances a Hilbert 
space version of the usual Floquet theory leads to an expression for the wave operators 
as the limit of an infinite sequence which shows some resemblance to the field-free case. 
We also show for external fields with sinusoidal time dependence that under certain 
mild restrictions the wave operators converge strongly towards the wave operators 
pertaining to the field-free case if the field frequency tends to infinity. 

In the second paper (PrugoveEki and Tip 1974, to be referred to as 11) we prove the 
existence of the wave operators for the model introduced earlier in this section. This 
result is obtained under some suitable conditions on the potential (1.3) and the field 
terms (1.5). 

2. Time-evolution operators for non-conservative systems 

The class of models mentioned in the introduction provides examples of systems which 
do not conserve energy, since, due to  the presence of an external field, energy can be 
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exchanged wit.h the environment. Mathematically, this feature is reflected in the fact 
that the hamiltonian l?(t) of the system is time dependent. Dealing with a family 
{l?(t)} of, in general, unbounded operators depending on a parameter t E 9 poses 
mathematical problems which are absent in the special case when r?(t) is equal to a 
fixed operator l? for all values oft .  In order to arrive at a mathematically manageable 
theory we shall impose certain restrictions on l?(t) by specifying in greater detail the 
manner in which A(t) depends on t E 9. These restrictions are sufficiently generous to 
include a large class of models which are of physical interest. Let 2 be a separable 
complex Hilbert space with inner product (. . . I . .  .), which is antilinear in the left 
variable and linear in the right one and with vector norm 1 1 . .  . I /  = (. . . I . . .)l/'. We 
assume that l?(t) is of the form 

(2.1) A(?) = A, + H&) 

where H ,  and HD(t )  are operators with the following properties : 
(i) H ,  is self-adjoint with domain 9, dense in 2. 

H&t)  is self-adjoint and bounded for all t E W. 
H&t)  is of bounded variation on any finite interval [a, b] in 9, ie there is a 
constant C, such that for any subdivision a = to  < t ,  < . . . < tn = b 

n c l l H & k ) - - ~ & t k - l ) I l  G C l ,  (2.2) 
k =  1 

where 11. . . / I  denotes the operator bound. 
H&) is uniformly bounded on 9, ie IIHs(t)ll -s C, for all t E 9 and some 
positive constant C,. 

(iii) H,(t) is strongly continuous in t for all t E W. 
Let us introduce the auxiliary operators 

~ , ( t )  = iA(t), 

A4(t )  = iB(-t). 

A l(t) = -iA(t), 

A,(t) = - iA( - t ) ,  
(2.3) 

Since H&t)  is bounded it follows that the domains of Aj( t ) ,  j = 1, ... . ,4,  coincide with 9. 
It is a routine matter to verify that if the above conditions (i) and (ii) are satisfied, 

then so are the conditions C,  and C, of Kat0 (1953). Furthermore, if condition (iii) 
is satisfied as well then condition C, of Kat0 is satisfied. Hence we can restate theorems 
2 and 3 by Kat0 (1953) in the following form which is more convenient for our purposes. 

Lemma 2.1. Let the above conditions(i)and(ii) hold. Then there exist evolution operators 
U j t ,  s), j = 1, . . . ,4, for all real t 2 s with the following properties : 

(1) Uj( t ,  s) are bounded and II Uj(t ,  s)ll < 1. 
(2) Each Uj( t ,  s), j = 1,. . . , 4  is strongly continuous in s and t simultaneously. 
(3) Uj t ,  t )  = I and U j t ,  s) = Uj(r, r ) U f r ,  s) for all t 2 r 2 s. 
(4) For any x E 9 the following limits exist : 

~ j + ) ( t )  = s-lim c - ' (Uj ( t+c ,  t ) - l ) x ,  
t + + O  

A $ - ) ( t )  = s-limc-'(Uj(t, C + + O  t - C ) - I ) x ,  (2.4) 

and Aj*)(t) coincide with Aj( t ) ,  j = 1,. . . ,4,  at all t E W with the possible exception 
of a denumerable set of values. 
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( 5 )  UJ{t, s ) 9  c 9 and for x E 9 the vector-valued function x ( t )  = Uj t ,  s)x has a 

(6) Each Uj( t ,  s), j = 1 , .  . . , 4  is uniquely determined by the above properties (1H5).  
strong right derivative D ( + ) x ( t )  which is equal to Ai+)( t )x( t ) .  

Lemma 2.2. If the conditions (i) and (ii) are satisfied, then UJ{t, s), j = 1,.  . . ,4, are 
unitary, their adjoints Uj*(t, s) are strongly continuous in r and s simultaneously and 
the following relations are satisfied for all t 2 s : 

Proof. According to Kat0 (1953) 

(2.7) 

where s = to  < t , ,  . . .,< t, = t, t k - '  < t; < tk  and c = maxltk-tk-,l. 
Hence U j t ,  s) is the strong limit of a sequence of unitary operators and consequently 

it is isometric on %, ie Uj*(t, s)Uj(t ,  s) = I. To establish that, for example, U,( t ,  s) 
is actually unitary, note that for any x ,  y E % 

( X I  U At, sly> 

= ( U , ( - &  - r )x ly>.  

Thus Uf(t, s) = U,( - s, - t )  and consequently UT(t, s) is isometric on % by the preceding 
result for U,(  - s, - t). This shows that U,(t, s) are unitary for j = 1,3 ; the same result 
for j = 2,4 can be obtained in a similar manner. By letting c + + 0 in the equality 

(c- ' [ U  ',& + c, t )  - I l x l y )  = <XI€- '[ 

<A' , t l ( t )x ly)  = (xlAS:'l(-t)Y) 

- t ,  - t - E) - I]y) 

with x,  y E 9 we obtain 

and consequently (2.6) is true. The strong continuity of Uj*(t ,  s) in t and s follows from 
(2.5) and lemma 2.1. 

Lemma 2.3. If the conditions (i), (ii) and (iii) are satisfied then UJ(t, s)x and U;(?, s)x, 
j = 1 , .  . . ,4,  have strong partial derivatives in t for any x E 9. These derivatives are 
strongly continuous in the variable t 2 s and satisfy the relations : 
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Proof. The above statements pertaining to d,Uj(t,s) follow from theorem 3 of Kat0 
(1953). To derive the analogous results for Uj*(t, s) take x, y E 9 and note that 

lim (c- '[Uj*(t+~,s)-  U;(t,s)lxly) 
f + + O  

(2.10) 

= lim (xlc-'[U,(t+c,s)- U,( t , s ) ]y)  
€ + + O  

= (XlAj(t)Uj(t, s l y )  = (Uj*(t ,  s)Aj*(t)xty). 

Furthermore, we get by using point 3 in lemma 2.1 and (2.5) that 

I/ f - '[ Uj*(t + f ,  s) - Uj*(t, s)]xll 

= ~ - ~ { 2 1 / ~ / 1 ~ - 2  Re(xlU,{t+c, t)x)} 

= ( 1  E -  [ Uj( t  + C, t )  - I]x 1 1  2 .  

The right-hand side of the above relation converges towards 

IIAj(t)x/IZ = I1 Uj*(t, s)Aj*(t)xl12, 

where the equality is a consequence of the fact that A;(t) = - A,(t) .  From this result 
and (2.10) we infer by means of standard algebraic manipulations (see, for instance, 
Prugovetki 1971, p 334) that the corresponding strong limit exists and satisfies (2.9). 

The strong continuity of a,U;(t, s) in t at any to 2 s follows from (2.9) and the estimate 
(the plus sign in H,( f t )  refers to  the case j = 1,2, the minus sign to the case j = 3,4) 

/ I  s)Aj*(t)x - Uj*(to, s)Aj*(to)xll 

< II [H,( f 0-  H,( f to)lxll + I1 [ U p ,  s) - U p ,  9 s)l$(to)x I1 
as a consequence of the strong continuity in t of UT(t, s) (cf lemma 2.2) and of H B ( t )  
(cf condition (iii)). 

We should point out at this stage that the following statement is obviously true. 

Lemma 2.4. If Hg( t )  = H,*(t) has a strong derivative a,H,(t) that is uniformly bounded 
on any compact set in 9, ie 11 d,H,(t)ll < C,(a, 6) for t E [a, 61 and any a < 6, then con- 
ditions (iib) and (iii) are satisfied. 

The above criterion provides a practically useful and easy method for establishing 
the validity of the presuppositions (iib) and (iii) for models under consideration. It is 
convenient to replace in the sequel the two families { Ul(t, s)} and { U,(t ,  s)} by a single 
equivalent family f O(t, s)}. 

Theorem 2.1. If the conditions (i) and (ii) are satisfied the families of operators 

for t 2 s 

for t < s 
O(t, s) = (2.1 1) 

and 8*(t, s) are strongly continuous in s, t E W. The operators u(t, s) are unitary and 
have the following properties : 

O(t, s).9 c 9 (2.12) 

O(t, t )  = I (2.13) 
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(2.14) 

(2.15) 

for arbitrary r,  s, t E W. 

Proof. The strong continuity properties and (2.12H2.13) are immediate consequences 
of the definition (2.1 1 )  and the corresponding properties of U , ( t ,  s) and U3(t ,  s). The 
relation (2.14) is obtained from (2.5) and the unitarity of U1,3(t, s). Finally i f s  < r < t 
then (2.15) follows from point 3 in lemma 2.1. If, for example, r < t < s then by the 
same point o ( r ,  s) = U(r ,  t )o( t ,  s) and (2.15) is obtained by using (2.14). 

Theorem 2.2. If conditions (i), (ii) and (iii) are satisfied then c(t, s)x has strong partial 
derivatives in t and s for each x E 9. These derivatives satisfy the equations 

a,O*(t, SIX = iO*(t, s)A(t)x (2.16) 

a,O*(t, s)x = -iR(s)o*(t,s)x (2.17) 
and are strongly continuous in the respective t and s variables. The strongly continuous 
operator-valued function O(t, s) is uniquely determined by the properties (2.12H2.16). 

a,O(t, SIX = - iR(t)O(t, s)x, 

a,O(t, SIX = i Qt, s)A(s)x, 

Proof. The statements concerning the derivatives in t are immediate consequences of 
lemma 2.3 applied to U,( t ,  s) and U&, s). The corresponding results for the derivatives 
in s follow from this observation and (2.14), while uniqueness is already contained in 
lemma 2.1. 

As a corollary to the above theorem we can derive the integral equation : 

du exp[ - iH,(t - u)]HB(u)O(u, s), O(t, s) = exp[ - iH,(t - s)] - i (2.18) 

which provides an iterative metbod (see also Phillips 1953) for obtaining a convergent 
perturbation series solution for O(t, s). As a matter of fact, if x E 9 then O(r, s)x E 9 
by (2.12) and we obtain by using (2.16) 

a, exp[iH,(u - t ) ]  Q u ,  SIX = exp[iH,(u - t ) ]  [ - i ~ # ( u ) l  O(u, SIX. (2.19) 

The right-hand side of the above equation is strongly continuous in U since all the three 
U dependent factors have this property and in addition two of them have bounds not 
exceeding one for all t €9. Hence, the strong Riemann integral over [s, t ]  of this 
expression exists. By integrating both sides of (2.19) with respect to U we thus arrive at 
(2.18). 

In closing this section we remark that in practical cases where the external field is 
suddenly switched on or off so that condition (iii) is not fulfilled the evolution operator 
O(t,s) still has nice continuity properties (cf theorem 2.1). As a second remark we 
emphasize that H g ( t )  is assumed to  be bounded. 

This, however, is a limitation if one wants to  consider a real system (instead of a 
model), such as an H atom subject to  an external radiation field. Then the interaction 
hamiltonian (which plays the role of H,( t ) )  is no longer a bounded operator and conse- 
quently problems arise in connection with the domains of definition of various unbounded 
operators. 

i: 
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3. Definition and properties of wave and scattering operators 

In this section we consider two families of time-evolution operators U,(t, s) and U(t ,  s) 
whose corresponding infinitesimal generators H,(t) and H ( t )  at each t satisfy the con- 
ditions (i), (ii) and (iii) imposed on A(t) in the preceding section. Our main interest will 
be the existence and properties of the wave operators 

Q,(s) = s - lim U*(t,  s)U,(r, s). 
r - f m  

Lemma 3.1. Suppose the two strong limits in (3.1) exist for some S E W .  Then Q,(s) 
exist for all s E @ and have the intertwining properties 

w . 9  40 * (4  = 0, W o ( r ,  4 (3.2) 

for all r ,  s E W. These intertwining properties will assume the form 

U(r ,  s)Q,(t) = Q*(t)U,(r,  s) (3.3) 

for all r, s, t E W if and only if 0,(s) are independent of s E W. 

Proof. From the relation 

U*(t, s)Uo(t, 4 = U*@, s){ U*(t, r)Uo(t,  r ) }  Uo(r, s) 

n,(s) = U*(r, s) s- lim U *  ( t ,  r)U,(t ,  r))  Uo(r,  s) 

obtained by means of (2.15) we infer that 

i r - f m  

exist if Q,(r )  exist. Moreover, by (2.14) the above imply (3.2). By reversing the roles of 
r and s we conclude that the first part of the lemma is true. If Q,(s) is independent of s 
then (3.3) follows at once from (3.2). Conversely, if (3.3) is true then by setting r = 0 
in (3.2) and using (2.14) we get 

Q*b) = U*((), s)Q*(O)U,(O, s) = U*@, s)U(O, s)Q,(O) = Q,(O), 

ie Q,(s) is independent of s. 

The wave operators Q,(s) are strong limits of unitary operators and consequently 
the following result obviously holds. 

Theorem 3.1. If the wave operators Q,(s) defined in (3.1) exist, then they are partial 
isometries with initial domain 2'. 

In order to derive a simple criterion for the existence of Q,(s) we need the following 
lemma. 

Lemma 3.2. Let gin" denote the set of all vectors x in the domain 9Ho(r) of H,( t )  at all 
t E 9 for which U,(t ,  s)x belongs to the domain 9H(r) of H ( t )  for all t, s E W. For any 
x E gin,, we have 

U*@, s)UO(t, s)x = x + i  du U*(u, s ) [H(u)-Ho(u)]Uo(u,  s)x. (3.4) 

Proof. Since x E 9Ho(r) and U,(t, s)x E 9H(r) when x E gin,, we can apply theorem 2.2 
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and state that the strong derivative d,U*(t, s)U,(t, s)x exists and is a strongly continuous 
function of t  E W. According to (2.16) we have 

d,U*(u, s)U,(u, s)x = iU*(u, s ) [ H ( u ) - H o ( u ) ] U O ( u ,  s)x. 

After integrating both sides of the above equation in the strong Riemann sense with 
respect to U E [s, t] we arrive at (3.4). By a straightforward application of the above 
lemma we obtain the following criterion which will be used in (ii) for establishing the 
existence of Q,(s). 

Theorem 3.2. Let gS denote the set of all x E gin" for which 
*U 

(3.5) 

for some values t ,  2 0. If gS is dense in X for some s E W then i2,(s) in (3.1) exist for 
that value of s. 

The scattering operator can be defined by 

S(S) = Q*,(S)Q-(S). (3.6) 

In general it depends explicitly on the chosen value of s E W. In fact, according to (3.2) 
we have 

(3.7) 

for any r ,  s E W. Physically such a dependence of the wave operators on the instant s 
where we start comparing the actual motion of the wave packet with the 'unperturbed' 
case depends very much on the behaviour of the external field from that moment onwards. 
Thus the transition probabilities will very much depend not only on the manner in 
which the two particles interact but also on their interaction with the field. The depend- 
ence on s can be eliminated only after averaging procedures are carried out. This 
matter is considered further in 11, where specific models are considered. 

Let us consider now a special type of H,(t) and H ( t )  for which the existence of sZ,(s) 
can be established directly, without resorting to theorem 3.2. Thus, take 

S(s) = W r ,  s ) S ( W O ( r ,  s) 

H,(t) = H'O)+ H'l)(t) ,  H(t) = H,(t)+ v (3.8) 

where H'O) and H'O) + V are self-adjoint, while H("(t) satisfies in relation to both 
and H'O) + V the conditions imposed in 4 2 on H,(t). Moreover, we require 

We introduce the auxiliary time-evolution groups 

Uo(t )  = exp( - MO+), O(t) = exp[ - i(H'O) + ~ ) t ]  (3.10) 

and we assume in addition that the auxiliary wave operators 

(3.1 1)  
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Lemma 3.3. If (3.9) is satisfied then the uniform limits 

A$'+) = U- lim ~ ; ( t ,  s)Zi,(t-s), 

A+(s) = U- lim U*(t, s)o(t  -s) 

t - f a  

t - f c a  

are unitary operators on S and have the intertwining properties 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Proof. By applying (2.18) to the case where H, = H'O) and H B ( t )  = H ( ' ) ( t )  we obtain 

U,*(t, s )D0( t - s )  = Z + i  du U , * ( ~ , s ) H ' ~ ) ( u ) ~ ~ ( u - s ) .  

Hence we have the uniform estimate 

from which the existence of the limits AT)(s) in (3.14) follows as a direct consequence of 
(3.9). Being uniform limits of unitary operators AT)(s) are unitary themselves. The 
intertwining property (3.14) can be derived as in lemma 3.1. The argument for (3.13) 
and (3.15) proceeds in the same manner. 

Theorem 3.3. Suppose that H,(t) and H ( t )  are as in (3.8) and that (3.9) is satisfied. Then 
t2,(s) in (3.1) exist if and only if ai in (3.11) exist, and 

Q k (4 = f (M f (A")*. (3.16) 

Proof. The result follows by lemma 3.3 from the obvious relation 

U*(t,s)U,(t, s) = { v * ( t , S ) O ( t - s ) } { ~ * ( t - s ) D 0 ( t - S ) } { D , * ( t - S ) U , ( t ,  s)} 

and the observation that the expressions in the first and last of the above curly brackets 
have uniform limits and therefore their adjoints also converge uniformly to the adjoints 
of their respective limits. 

4. Periodic time dependence 

Let H o ( t )  and H(t )  be as in 0 3. Thus we can write 

H o ( t )  = H'O'+ H(I ) ( t ) ,  H ( t )  = H + H'"(t). 

In this section we pursue the consequences of an H")(t) that is periodic in time, ie 

H( ' ) ( t )  = H'')(t+a) (4.2) 

for some fixed real a. In this case a Hilbert space version of the Floquet theory (see for 
instance, Ince 1956, p 381, Shirley 1965) can be based upon the following result. 
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Lemma 4.1. If H,(t) and H ( t )  in (4.1) satisfy conditions (i), (ii) and (iii) of 0 2 and if (4.2) 
is also satisfied then 

U,( t ,S)  = U,(t+a,s+a),  U( t ,  s) = U(t  +a, s+a) (4.3) 
for all s, t E W and 

Sz*(s) = n,(s+a), 

provided that the above wave operators defined according to (3.1) do exist. 
(4.4) 

Proof. The property (4.3) for U,(t, s) follows from the observation that 

U,(t + a, s + a)  = vgt, s) 

satisfies (2.12H2.15) as well as the equation 

d,U;(t, s)x = -iH,(t+ a)U'(t, s)x = - iH,(t)U'(t, s)x 

for any x E 9Ho(t). Therefore, due to  the uniqueness of the time-evolution operator 
(cf theorem 2.2), Ub(t , s )  = U,(t,s). Naturally the same argument applies to U(t , s ) .  
Then (4.4) follows from (4.3) and the definition of the wave operators. 

When U,(t, s) and U(t ,  s) have the properties of lemma 4.1 and since both are unitary 
operator families, we can define the self-adjoint operators R, and I? according to 

exp( - iRoa) = u,(u, o), 

O,(t) = exp( - iRot), O(t) = exp(-iRt), t E W  (4.6) 

exp[ - iRa] = ~ ( a ,  0). (4.5) 

Next we introduce the strongly continuous operator groups 

and the unitary operator families Wo(t) and W ( t )  through 

WO@) = O)O,*(t), W(t)  = U(t ,  O)O*(t). 

Since for x E &' and t ,  to E W 
(4.7) 

IlW(t)- W(t0)lxll G I I ~ ( t , O ) [ w - t ) -  ~( - to ) lx l l+  l I [ W , O ) -  ~ ( t o , o ) l ~ ( - t o ) x l l ,  

it follows from the uniform boundedness of U(t ,  0) and the strong continuity of U(t ,  0) 
and O(t) that W(t )  is strongly continuous in t. For similar reasons this is also the case 
for WO([). In addition it is easily verified that 

W,(O) = W(0) = I ,  WO@) = W,(t+a), W( t )  = W(t+a). (4.8) 

Since 

U,(t, s) = Wo(t)Oo(t - s)W,*(s), 

~ , ( s ) x  = s- lim W(s)O*(t-s)W*(r)W,(t)~,(t-s)W,*(s)x 

U( t ,  s) = W(t) f i ( t  - s)W*(s), (4.9) 
it follows that 

(4.10) 
t - + f f i  

provided Sz,(s) exist. 

respectively, we then have, since W,(na) = W(na) = I : 
For s = 0 and t = na, where n runs through the positive and negative integers 

(4.11) Sz,(O) = s - lim exp(iaRn) exp( - iaR,n). 
n - r i c c  
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Consequently the following intertwining properties hold 

exp(iaRn)R,(O) = R ,(o) exp(iaE?,n), n = 0, * l ,  f 2 , .  . . . (4.12) 

Thus we have obtained an expression for the wave operators in terms of the constant 
self-adjoint operators Ro and R.  (These operators are Hilbert space operator versions 
of the so called monodromy matrices of the Floquet theory.) In this way the effect of 
the external field term H(' ) ( t )  is entirely absorbed in fi0 and t?, which operators might be 
called the dressed hamiltonians of the problem (see also Cohen-Tannoudji and Haroche 
1969, where a dressed hamiltonian is introduced for a description of the scattering of 
light by an atom subjected to a strong radio-frequency field). 

Next we turn to the question of what happens when the frequency w = 2 4 a  of the 
external field term tends to  infinity. We shall restrict our attention to the case that 
H ( ' ) ( t )  in (4.2) has the specific form 

H"'(t) = H ( ' )  cos(wt +6). (4.13) 

We assume furthermore that the conditions of lemma 4.1 are satisfied. In particular 
we assume the existence of R,(s). Since we are considering explicitly the dependence 
of various quantities on o we shall indicate this by a superscript, ie U ( t ,  s) = U(")(t ,  s), 
R,(s) = R:O)(s), etc. We define 

Ub")(t, s) = exp[ - iH(O)(t - s)], U(")( t ,  s) = exp[ - iH(t - s)]. (4.14) 

Lemma 4.2. Let the conditions of lemma (4.1) be satisfied and let H(' ) ( t )  have the special 
form (4.13). Then 

Ub")(t, s) = s- lim @")(t, s), U(")( t ,  s) = s- lim s). (4.15) 
w - r * f f i  "+fa, 

Proof. We give the proof for U(")(.t, s), the proof for Ub")(t, s) being analogous. 
Equation (2.18) applied to the present case yields for arbitrary x E &': 

(4.16) 
J S  

As mentioned earlier this expression can be used to generate a converging perturbation 
series expansion for U(")(t, s)x. In fact it has been shown by Phillips (1953), under 
conditions that are satisfied in the present case, that U(")@, s) is given by 

a 

U'"'(t, s) = W,(t, s), 
n = O  

(4.17) 

where the convergence is with respect to  the uniform topology on any finite interval 
[s, t ] .  Here 

(4.18) Wo(t S )  = U(")(t ,  S) 

and 

J S  
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Thus we obtain 

([U'"'(t, s)- U'"'(t, s)]xly)  = 

N 

G 2 I(K(t,s)xIy)I + !I,=$+, w.(t?S)Il . . . IIXII . . . IIYII. 
n =  1 

Now the sum in the last term can be made arbitrarily small, independent of w, by 
choosing N sufficiently large (see Phillips 1953, equation (28), where now A4 = 1, 
w = 0 and K, = llH(l)ll). Thus it is sufficient to show that (W,(t, s)xly) tends to zero 
for w - f c o  for arbitrary n = 1,2,. . . . As IIU'")(t,s)xll = I / U ( p ) ( t , ~ ) ~ l I  = llxll the 
strong convergence of U(")(t, s)x towards U(")(t, s)x then follows from the above result. 
We can write for n 2 1 

(K( t ,  s)xly) = f dt, f' dt, . . . r-' dt, cos(wtl +a), . . . cos(wtn+6)F(t, t , ,  . . . , t,, s), 
S S 

(4.19) 

where 

is a continuous function of each of its arguments. A simple extension of the reasoning 
that leads to the usual Riemann-Lebesgue lemma then leads to the conclusion that 
(W,(t, s)x, y) tends to  zero for w + f CO. 

Theorem 4.1. Let the conditions of lemma 4.2 be satisfied and suppose further that the 
wave operators aim) exist as well as SZ'$"(s) for every w E W. If the (strong) convergence 
of (U(")(t, s))* Ub")(t, s) towards sZe)(s) is uniform with respect to w, ie for any given 

> 0 and for given x E &' there exists a to = to(€, x) independent of w, such that 

for all It\ > pol, then 

Proof. For given c > 0 we can find a to E W, independent of 0, such that in the inequality 

the first and the last term at the right are smaller than r/4 for t > t o .  Keeping t fixed 
from now on we can choose Iw( so large that the middle term becomes smaller than 
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and lemma 4.2 applied twice. 

We shall have occasion to apply theorem 4.1 in I1 for the special models considered 
there. I t  will be evident that lemma 4.2 and theorem 4.1 still hold for H'"(t) of the type 

(4.22) 

Infinite series of the above type can in general not be treated by means of the present 
methods. If, however, 

(4.23) 

then the above results remain true. This follows from a consideration of the expression 
for (W,(t, s ) x l y )  which replaces (4.19) in this more general case. 
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